Topic |
Page # |
|
Chapter 1. Introduction: The Nature of Science and Physics |
|
1.1. Physics: An Introduction |
6-14 |
1.2. Physical Quantities and Units |
14-22 |
1.3. Accuracy, Precision, and Significant Figures |
22-28 |
1.4. Approximation |
28-30 |
Chapter 2. Kinematics |
|
2.1. Displacement |
37-39 |
2.2. Vectors, Scalars, and Coordinate Systems |
40-41 |
2.3. Time, Velocity, and Speed |
41_45 |
2.4. Acceleration |
45-56 |
2.5. Motion Equations for Constant Acceleration in One Dimension |
56-67 |
2.6. Problem-Solving Basics for One-Dimensional Kinematics |
67-69 |
2.7. Falling Objects |
69-77 |
2.8. Graphical Analysis of One-Dimensional Motion |
77-84 |
Chapter 3. Two-Dimensional Kinematics |
|
3.1. Kinematics in Two Dimensions: An Introduction |
98-101 |
3.2. Vector Addition and Subtraction: Graphical Methods |
101-109 |
3.3. Vector Addition and Subtraction: Analytical Methods |
110-116 |
3.4. Projectile Motion |
116-124 |
3.5. Addition of Velocities |
124-132 |
Chapter 4. Dynamics: Force and Newton’s Laws of Motion |
|
4.1. Development of Force Concept |
145-146 |
4.2. Newton’s First Law of Motion: Inertia |
146-147 |
4.3. Newton’s Second Law of Motion: Concept of a System |
147-153 |
4.4. Newton’s Third Law of Motion: Symmetry in Forces |
153-157 |
4.5. Normal, Tension, and Other Examples of Forces |
157-166 |
4.6. Problem-Solving Strategies |
166-168 |
4.7. Further Applications of Newton’s Laws of Motion |
168-175 |
4.8. Extended Topic: The Four Basic Forces—An Introduction |
175-180 |
Chapter 5. Further Applications of Newton’s Laws: Friction, Drag, and Elasticity |
|
5.1. Friction |
192-198 |
5.2. Drag Forces |
198-203 |
5.3. Elasticity: Stress and Strain |
203-213 |
Chapter 6. Uniform Circular Motion and Gravitation |
|
6.1. Rotation Angle and Angular Velocity |
222-226 |
6.2. Centripetal Acceleration |
226-230 |
6.3. Centripetal Force |
230-234 |
6.4. Fictitious Forces and Non-inertial Frames: The Coriolis Force |
234-238 |
6.5. Newton’s Universal Law of Gravitation |
238-246 |
6.6. Satellites and Kepler’s Laws: An Argument for Simplicity |
246-251 |
Chapter 7. Work, Energy, and Energy Resources |
|
7.1 Work: The Scientific Definition |
262-265 |
7.2 Kinetic Energy and the Work-Energy Theorem |
266-271 |
7.3 Gravitational Potential Energy |
271-276 |
7.4. Conservative Forces and Potential Energy |
276-280 |
7.5. Nonconservative Forces |
280-285 |
7.6. Conservation of Energy |
285-289 |
7.7. Power |
289-294 |
7.8. Work, Energy, and Power in Humans |
294-297 |
7.9. World Energy Use |
297-300 |
Chapter 8. Linear Momentum and Collisions |
|
8.1. Linear Momentum and Force |
314-317 |
8.2. Impulse |
317-319 |
8.3. Conservation of Momentum |
319-323 |
8.4. Elastic Collisions in One Dimension |
323-326 |
8.5. Inelastic Collisions in One Dimension |
326-330 |
8.6. Collisions of Point Masses in Two Dimensions |
330-334 |
8.7. Introduction to Rocket Propulsion |
334-337 |
Chapter 9. Statics and Torque |
|
9.1. The First Condition for Equilibrium |
348-350 |
9.2. The Second Condition for Equilibrium |
350-355 |
9.3. Stability |
355-359 |
9.4. Applications of Statics, Including Problem-Solving |
359-363 |
9.5. Simple Machines |
363-367 |
9.6. Forces and Torques in Muscles and Joints |
367-372 |
Chapter 10. Rotational Motion and Angular Momentum |
|
10.1. Angular Acceleration |
385-389 |
10.2. Kinematics of Rotational Motion |
389-394 |
10.3. Dynamics of Rotational Motion: Rotational Inertia |
394-399 |
10.4. Rotational Kinetic Energy: Work and Energy Revisited |
399-407 |
10.5. Angular Momentum and Its Conservation |
407-414 |
10.6. Collisions of Extended Bodies in Two Dimensions |
414-418 |
10.7. Gyroscopic Effects: Vector Aspects of Angular Momentum |
418-420 |
Chapter 11. Fluid Statics |
|
11.1. What Is a Fluid |
432-433 |
11.2. Density |
433-436 |
11.3. Pressure |
436-438 |
11.4. Variation of Pressure with Depth in a Fluid |
438-442 |
11.5. Pascal’s Principle |
442-445 |
11.6. Gauge Pressure, Absolute Pressure, and Pressure Measurement |
445-449 |
11.7. Archimedes’ Principle |
449-456 |
11.8. Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action |
456-465 |
11.9. Pressures in the Body |
465-470 |
Chapter 12. Fluid Dynamics and Its Biological and Medical Applications |
|
12.1. Flow Rate and Its Relation to Velocity |
482-485 |
12.2. Bernoulli’s Equation |
486-490 |
12.3. The Most General Applications of Bernoulli’s Equation |
490-493 |
12.4. Viscosity and Laminar Flow; Poiseuille’s Law |
493-501 |
12.5. The Onset of Turbulence |
501-503 |
12.6. Motion of an Object in a Viscous Fluid |
503-505 |
12.7. Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes |
505-509 |
Chapter 13. Temperature, Kinetic Theory, and the Gas Laws |
|
13.1. Temperature |
520-527 |
13.2. Thermal Expansion of Solids and Liquids |
528-534 |
13.3. The Ideal Gas Law |
535-542 |
13.4. Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature |
542-549 |
13.5. Phase Changes |
549-553 |
13.6. Humidity, Evaporation, and Boiling |
553-558 |
Chapter 14. Heat and Heat Transfer Methods |
|
14.1. Heat |
568-570 |
14.2. Temperature Change and Heat Capacity |
570-575 |
14.3. Phase Change and Latent Heat |
575-582 |
14.4. Heat Transfer Methods |
582-583 |
14.5. Conduction |
583-588 |
14.6. Convection |
588-593 |
14.7. Radiation |
593-599 |
Chapter 15. Thermodynamics |
|
15.1. The First Law of Thermodynamics |
613-618 |
15.2. The First Law of Thermodynamics and Some Simple Processes |
618-625 |
15.3. Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency |
625-631 |
15.4. Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated |
631-635 |
15.5. Applications of Thermodynamics: Heat Pumps and Refrigerators |
635-640 |
15.6. Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy |
640-648 |
15.7. Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation |
648-653 |
Chapter 16. Oscillatory Motion and Waves |
|
16.1. Hooke’s Law: Stress and Strain Revisited |
667-671 |
16.10. Superposition and Interference |
696-700 |
16.11. Energy in Waves: Intensity |
701-704 |
16.2. Period and Frequency in Oscillations |
671-673 |
16.3. Simple Harmonic Motion: A Special Periodic Motion |
673-678 |
16.4. The Simple Pendulum |
678-680 |
16.5. Energy and the Simple Harmonic Oscillator |
680-683 |
16.6. Uniform Circular Motion and Simple Harmonic Motion |
683-686 |
16.7. Damped Harmonic Motion |
686-690 |
16.8. Forced Oscillations and Resonance |
690-692 |
16.9. Waves |
692-696 |
Chapter 17. Physics of Hearing |
|
17.1. Sound |
714-716 |
17.2. Speed of Sound, Frequency, and Wavelength |
716-720 |
17.3. Sound Intensity and Sound Level |
720-725 |
17.4. Doppler Effect and Sonic Booms |
725-730 |
17.5. Sound Interference and Resonance: Standing Waves in Air Columns |
730-738 |
17.6. Hearing |
738-743 |
17.7. Ultrasound |
744-752 |
Chapter 18. Electric Charge and Electric Field |
|
18.1. Static Electricity and Charge: Conservation of Charge |
764-769 |
18.2. Conductors and Insulators |
769-772 |
18.3. Coulomb’s Law |
772-774 |
18.4. Electric Field: Concept of a Field Revisited |
774-776 |
18.5. Electric Field Lines: Multiple Charges |
776-780 |
18.6. Electric Forces in Biology |
780-781 |
18.7. Conductors and Electric Fields in Static Equilibrium |
782-786 |
18.8. Applications of Electrostatics |
786-791 |
Chapter 19. Electric Potential and Electric Field |
|
19.1. Electric Potential Energy: Potential Difference |
804-811 |
19.2. Electric Potential in a Uniform Electric Field |
811-814 |
19.3. Electrical Potential Due to a Point Charge |
814-816 |
19.4. Equipotential Lines |
816-819 |
19.5. Capacitors and Dielectrics |
819-827 |
19.6. Capacitors in Series and Parallel |
827-831 |
19.7. Energy Stored in Capacitors |
831-833 |
Chapter 20. Electric Current, Resistance, and Ohm’s Law |
|
20.1. Current |
844-850 |
20.2. Ohm’s Law: Resistance and Simple Circuits |
850-852 |
20.3. Resistance and Resistivity |
852-858 |
20.4. Electric Power and Energy |
858-861 |
20.5. Alternating Current versus Direct Current |
861-866 |
20.6. Electric Hazards and the Human Body |
866-870 |
20.7. Nerve Conduction–Electrocardiograms |
870-873 |
Chapter 21. Circuits and DC Instruments |
|
21.1. Resistors in Series and Parallel |
888-898 |
21.2. Electromotive Force: Terminal Voltage |
898-906 |
21.3. Kirchhoff’s Rules |
906-911 |
21.4. DC Voltmeters and Ammeters |
911-915 |
21.5. Null Measurements |
916-918 |
21.6. DC Circuits Containing Resistors and Capacitors |
919-923 |
Chapter 22. Magnetism |
|
22.1. Magnets |
937-939 |
22.2. Ferromagnets and ElectromagnetsMagnets |
939-943 |
22.3. Magnetic Fields and Magnetic Field Lines |
943-944 |
22.4. Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field |
944-946 |
22.5. Force on a Moving Charge in a Magnetic Field: Examples and Applications |
947-951 |
22.6. The Hall Effect |
951-954 |
22.7. Magnetic Force on a Current-Carrying Conductor |
954-956 |
22.8. Torque on a Current Loop: Motors and Meters |
956-960 |
22.9. Magnetic Fields Produced by Currents: Ampere’s Law |
960-964 |
22.10. Magnetic Force between Two Parallel Conductors |
964-966 |
22.11. More Applications of Magnetism |
966-969 |
Chapter 23. Electromagnetic Induction, AC Circuits, and Electrical Technologies |
|
23.1. Induced Emf and Magnetic Flux |
985-987 |
23.2. Faraday’s Law of Induction: Lenz’s Law |
987-990 |
23.3. Motional Emf |
991-993 |
23.4. Eddy Currents and Magnetic Damping |
993-997 |
23.5. Electric Generator |
997-1001 |
23.6. Back Emf |
1001-1002 |
23.7. Transformers |
1002-1007 |
23.8. Electrical Safety: Systems and Devices |
1007-1011 |
23.9. Inductance |
1011-1016 |
23.10. RL Circuits |
1016-1018 |
23.11. Reactance, Inductive and Capacitive |
1016-1022 |
23.12. RLC Series AC Circuits |
1022-1028 |
Chapter 24. Electromagnetic Waves |
|
24.1. Maxwell’s Equations: Electromagnetic Waves Predicted |
1043-1045 |
24.2. Production of Electromagnetic Waves |
1045-1048 |
24.3. The Electromagnetic Spectrum |
1048-1063 |
24.4. Energy in Electromagnetic Waves |
1063-1065 |
Chapter 25. Geometric Optics |
|
25.1. The Ray Aspect of Light |
1077 |
25.2. The Law of Reflection |
1078-1080 |
25.3. The Law of Refraction |
1080-1087 |
25.4. Total Internal Reflection |
1087-1092 |
25.5. Dispersion: The Rainbow and Prisms |
1092-1098 |
25.6. Image Formation by Lenses |
1098-1112 |
25.7. Image Formation by Mirrors |
1112-1120 |
Chapter 26. Vision and Optical Instruments |
|
26.1. Physics of the Eye |
1130-1135 |
26.2. Vision Correction |
1135-1139 |
26.3. Color and Color Vision |
1139-1142 |
26.4. Microscopes |
1142-1148 |
26.5. Telescopes |
1148-1152 |
26.6. Aberrations |
1152-1154 |
Chapter 27. Wave Optics |
|
27.1. The Wave Aspect of Light: Interference |
1162-1163 |
27.2. Huygens’s Principle: Diffraction |
1163-1166 |
27.3. Young’s Double Slit Experiment |
1166-1171 |
27.4. Multiple Slit Diffraction |
1171-1175 |
27.5. Single Slit Diffraction |
1175-1178 |
27.6. Limits of Resolution: The Rayleigh Criterion |
1178-1183 |
27.7. Thin Film Interference |
1183-1188 |
27.8. Polarization |
1188-1197 |
27.9. Extended Topic Microscopy Enhanced by the Wave |
1197-1200 |
Chapter 28. Special Relativity |
|
28.1. Einstein’s Postulates |
1213-1215 |
28.2. Simultaneity And Time Dilation |
1215-1221 |
28.3. Length Contraction |
1222-1226 |
28.4. Relativistic Addition of Velocities |
1226-1232 |
28.5. Relativistic Momentum |
1232-1233 |
28.6. Relativistic Energy |
1234-1241 |
Chapter 29. Quantum Physics |
|
29.1. Quantization of Energy |
1251-1253 |
29.2. The Photoelectric Effect |
1253-1257 |
29.3. Photon Energies and the Electromagnetic Spectrum |
1257-1264 |
29.4. Photon Momentum |
1264-1268 |
29.5. The Particle-Wave Duality |
1268-1269 |
29.6. The Wave Nature of Matter |
1269-1273 |
29.7. Probability: The Heisenberg Uncertainty Principle |
1273-1278 |
29.8. The Particle: Wave Duality Reviewed |
1278-1281 |
Chapter 30. Atomic Physics |
|
30.1. Discovery of the Atom |
1290-1292 |
30.2. Discovery of the Parts of the Atom: Electrons and Nuclei |
1293-1299 |
30.3. Bohr’s Theory of the Hydrogen Atom |
1300-1307 |
30.4. X Rays: Atomic Origins and Applications |
1307-1312 |
30.5. Applications of Atomic Excitations and De-Excitations |
1312-1322 |
30.6. The Wave Nature of Matter Causes Quantization |
1322-1325 |
30.7. Patterns in Spectra Reveal More Quantization |
1325-1327 |
30.8. Quantum Numbers and Rules |
1328-1332 |
30.9. The Pauli Exclusion Principle |
1333-1339 |
Chapter 31. Radioactivity and Nuclear Physics |
|
31.1. Nuclear Radioactivity |
1350-1355 |
31.2. Radiation Detection and Detectors |
1355-1358 |
31.3. Substructure of the Nucleus |
1358-1363 |
31.4. Nuclear Decay and Conservation Laws |
1363-1370 |
31.5. Half-Life and Activity |
1370-1376 |
31.6. Binding Energy |
1376-1380 |
31.7. Tunneling |
1380-1382 |
Chapter 32. Medical Applications of Nuclear Physics |
|
32.1. Medical Imaging and Diagnostics |
1395-1398 |
32.2. Biological Effects of Ionizing Radiation |
1399-1406 |
32.3. Therapeutic Uses of Ionizing Radiation |
1406-1409 |
32.4. Food Irradiation |
1409-1410 |
32.5. Fusion |
1410-1416 |
32.6. Fission |
1416-1421 |
32.7. Nuclear Weapons |
1421-1426 |
Chapter 33. Particle Physics |
|
33.1. The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited |
1439-1441 |
33.2. The Four Basic Forces |
1441-1443 |
33.3. Accelerators Create Matter from Energy |
1443-1446 |
33.4. Particles, Patterns, and Conservation Laws |
1447-1452 |
33.5. Quarks: Is That All There Is |
1452-1459 |
33.6. GUTs: The Unification of Forces |
1460-1463 |
Chapter 34. Frontiers of Physics |
|
34.1. Cosmology and Particle Physics |
1474-1482 |
34.2. General Relativity and Quantum Gravity |
1482-1488 |
34.3. Superstrings |
1488 |
34.4. Dark Matter and Closure |
1488-1492 |
34.5. Complexity and Chaos |
1492-1494 |
34.6. High-temperature Superconductors |
1494-1496 |
34.7. Some Questions We Know to Ask |
1496-1498 |
Appendix A. Atomic Masses |
|
Appendix B. Selected Radioactive Isotopes |
|
Appendix C. Useful Information |
|
Appendix D. Glossary of Key Symbols and Notation |
|
|